Colle du 17 mars : Séries de Fourier - Équations différentielles non linéaires

20.1 Cours

Question de cours 1 : Théorème de convergence normale des séries de Fourier.

Question de cours 2 : Théorème de Dirichlet.

Question de cours 3 : Théorème de Cauchy-Lipschitz.

20.2 Exercices

Exercice 0 : Tous les exercices de la semaine précédente.

Exercice 1 : Résoudre l'équation $y'^3 = y$.

Exercice 2 : Résoudre $y'' = 2y^3$, y(0) = y'(0) = 1.

Exercice 3 : Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ continue. Montrer que toutes les solutions de y'=f(y) sont monotones.

Exercice 4 : Soit $a \ge 0$. Soit y la solution maximale de $y' = x^3 + y^3$. Soit $]\alpha, \beta[$ son intervalle de définition. Montrer que y est strictement croissante sur $[0, \beta[$, que $\beta < +\infty$ et que $y(x) \to +\infty$ quand $x \to +\infty$.

Exercice 5 : Soit x la solution maximale de $x' = \cos t + \cos x$ avec $x(0) = x_0 \in]0, \pi[$. Montrer que x est définie sur \mathbb{R} et que, pour t > 0, on a $x(t) \in]0, \pi[$.

Exercice 6: Soit $F:[a,b]\times\mathbb{R}\to\mathbb{R}$ de classe C^1 telle que pour tout $x\in[a,b]$ la fonction $y\mapsto F(x,y)$ est strictement croissante. Montrer que, pour tous α et β , il existe au plus une solution y de y''=F(x,y) telle que $y(a)=\alpha$ et $y(b)=\beta$.

Exercice 7: On se place dans \mathbb{R}^3 muni de sa base canonique (e_1, e_2, e_3) . Soit $v \in \mathbb{R}^3$. Montrer qu'il existe une unique fonction $u = (u_1, u_2, u_3) : \mathbb{R} \to \mathbb{R}^3$ de classe C^1 telle que $u' + u \wedge u' = -u \wedge (u_3 e_3)$ et u(0) = v.